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ABSTRACT 

The buckling strength of a 120' truncated conical shell, with dimensions 
typical of a planetary entry body, subjected to a uniform external pres- 
sure reacted at the small edge was studied using Novozhilov shell and ring 
theory. Five cases of ring-stiffeners at the large end (with a prescribed 
ring at the small edge) and simply supported edges were treated for each 
of the following two wall constructions,(l) an aluminum sandwich and (2) a 
magnesium monocoque with many equally spaced interior rings. For each 
wall construction the minimum base ring size (of a one-parameter family of 
rings) required to effectively produce complete edge constraint is 
determined. 

iii 



THE EFFECT OF EDGE CONSTRAINT ON THE BUCKLING OF 

SANDWICH AND RING-STIFFENED 120 DEGREE CONICAL SHELLS 

SUBJECTED TO EXTERNAL PRESSURE 

By Gerald A. Cohen 
Aeronutronic, Division of Philco-Ford Corporation 

SUMMARY 

The buckling strength of a 120-degree truncated conical shell, with 
dimensions typical of a planetary entry body, subjected to a uniform external 
pressure reacted at the small edge was studied using a Novozhilov shell 
and ring theory. Five cases of ring-stiffeners at the large edge (with a 
prescribed ring at the small edge) and simply supported edges were considered 
for each of the two following wall constructions: (1) aluminum sandwich, 
and (2) magnesium monocoque with many equally spaced internal rings. For 
each wall construction the results indicate that for insufficient edge 
support, the shell buckles at a low value of critical pressure into a highly 
inextensional mode with two circumferential waves. As the base ring rigid- 
ity increases, the buckling displacements remain essentially unchanged, and 
the increase in critical pressure results primarily from the increase in 
flexural strain energy of the base ring in its buckled state. For a suf- 
ficiently rigid base ring or simply supported edges, the shell is forced to 
buckle into a mode with significant extension and seven circumferential 
waves. In this mode, the buckling displacements are small at the edges, 
and consequently, the critical pressure is relatively insensitive to edge 
conditions. 

Of the two wall constructions studied, the sandwich construction i,s 
superior, withstanding up to 50 percent more pressure than the ring-stiffened 
monocoque when sufficient edge constraint is provided. 

INTRODUCTION 

Previous analyses of the buckling of conical shells (Ref. 1) have, 
in.general, been limited to cases of idealized edge conditions, such as 
simply supported or clamped edges. Inextensional buckling modes, which 
can lead to reduced buckling loads, are kinematically inadmissible for such 
edge conditions. On the other hand, the edges of entry body shells are 
usually supported by ring .stiffeners, for which inextensional modes are 
possible. A recent study of axially compressed cylindrical shells with 
ring-stiffened edges (Ref. 2) shows that inextensional buckling modes do 
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occur for rings of insufficient rigidity, and cohsiderable ring rigidity is 
necessary to suppress this type of buckling. Energy considerations indi- 
cate that this behavior is not peculiar to cylindrical shells but is 
characteristic of all shell structures. 

The practical problem is then to determine, for a particular. configura- 
tion, the ring size required to suppress the inextensional buckling modes. 
The results of Ref. 2 suggest that further increases in ring size are 
ineffectual, since in the mode into which the shell is forced to buckle the 
ring strain energy is negligible. As in Ref. 2, the most enlightening 
approach to this problem is through use of the energy method. However, the 
present results were obtained through use of a digital computer program 
which solves the eigenvalue problem associated with the governing differen- 
tial equations (based on the nonlinear generalization for small finite 
rotations of Novozhilov's shell equations) for general ring-stiffened 
orthotropic shells of revolution by means of a modal iteration method. 
The details of this method are presented in Ref. 3. Linearized prebuckled 
equilibrium states, which are required as inputs to this program, were 
obtained through use of a second digital computer program based on the 
forward integration method of Novozhilov's shell equations presented in 
Ref. 4. 

NOMENCLATURE 

A, B dimensionless parameters of inextensional deformation 

d interior ring spacing 

E Young's modulus 

El' E2 meridional and circumferential elastic moduli of equivalent 
orthotropic material 

el meridional extensional strain 

I Ix or Iz for Cases 1, 2, and 3 

I X’ Iz' Ixz centroidal moments and product of inertia of ring cross section 

J torsional inertia of ring cross section 

M meridional stress couple of shell wall 

n circumferential wave number of buckling mode 
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P 

P 

r 

S 

S 

Tl' T2 

t' 

t 

u, v, w 

wMAx 
2 

a 

AP 

rl 

P 

X 

axial force per unit of circumferential distance 

external pressure 

reference radius of shell cross section 

area of ring cross section 

distance along meridian (see Fig. 1) 

meridional and circumferential stress resultants of shell wall 

shell wall layer thickness 

shell wall thickness effective in resisting stretching 

meridional, circumferential and normal displacement amplitudes 
of shell wall 

maximum normal displacement 

eccentricity of ring centroidal axis measured from inside 
shell surface, positive for internal rings 

conical semivertex angle 

change in P during buckling 

radial displacement of shell wall 

Poisson's ratio 

meridional rotation of shell wall 

Subscripts: 

b refers to base of cone 

I refers to interior ring 

m membrane solution 

X about a meridional axis 

Z about a normal axis 
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BUCKLING MODELS 

A sketch of the two models studied is given in Figure 1. The models 
are 120" truncated cones loaded by uniform external pressure. The resultant 
of the pressure load is reacted by a vertical line support through the 
centroid of the nose ring to simulate the inertial reaction of a payload. 
The effect of a nose cap is neglected. 

Configuration (A) is an aluminum sandwich shell composed of three 
isotropic layers and no interior rings. The properties of the sandwich 
face layers are: E = 10.5 x lo6 psi, p = 0.32, t = 0.020 in. The sand- 
wich core layer is 0.500 in. thick and is assumed to provide negligible 
rigidity in tangential directions while providing sufficient transverse 
shear and normal rigidity in order that the thin shell hypothesis of non- 
deformable normals remain valid. 

Configuration (B) is a magnesium ring-stiffened monocoque shell composed 
of a single isotropic layer with 31 equally spaced identical interior rings. 
The properties of this layer are: E = 6.5 x lo6 psi, p = 0.35, t = 0.051 in. 
The interior rings have the same elastic moduli as the shell wall and have 
the following section properties: I, = I, = 0.00414 in.4, I,, = 0, 
J = 0.00828 in.4, S = 0.0635 in.2, and Z = 0.3745 in. 

For each configuration, five cases of large end (base) rings were 
considered. The rings are of magnesium (E = 6.5 x lo6 psi and p = 0.35) 
and have the following section properties. 

Case I 
X - Ii - I xz J S - Z 

1 0.765 in. 4 0.765 in. 4 0 1.53 in. 4 0.98 in.2 1.31 in. 

2 3.13 3.13 0 6.27 1.57 2.06 

3 10.60 10.60 0 21.20 2.35 3.06 

4 3.13 0 0 0 1.57 2.06 

5 0 3.13 0 0 1.57 2.06 

For each of Cases 1 through 5, a magnesium ring with cross-sectional prop- 
erties of the Case 1 base ring is assumed to support the small edge of the 
cone. Since a normal pressure field acting on a shell with ring-supported 
edges is a nonconservative loading (Ref. 5), initially only "dead" pressure 
loading (for which the local load vectors are invariant during buckling 
deflections) was considered in Cases 1 through 5. An additional case, 
designated as Case 6, for which both shell edges are simply supported 
(i.e., q = v =AP = M = 0) was also studied for each configuration. In 
Case 6, both dead pressure loading and normal pressure loading were treated. 
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It is well known that, in general, the use of static stability analysis 
yields only an upper bound to the kinetic critical load for nonconservative 
loading. However, in order to gain more insight into the significance of 
normal pressure loading, additional calculations were made for Cases 2 and 3 
with this loading. 

RESULTS 

Prebuckled Equilibrium State 

Figures 2 and 3 show the shell stress resultants and meridional rota- 
tion of the prebuckled equilibrium state obtained from linearized shell 
and ring theory for Configurations (A) and (B), respectively. Cases 1 and 6 
are shown; Cases 2 through 5 are nearly identical to Case 1. The correspond- 
ing functions obtained from membrane theory are: 

r cos a 

T2 = -pr/cosa 
m 

(1) 

x, = C &El/E2 - 1) r2 + r: 1 p tana/2El tr cos a 

Comparison of Eqs. (1) with the curves of Figure 2 shows that membrane 
_ conditions are never fully realized on Configuration (A). In Figure 2b 

the straight line representing T2m has been inserted. The fact that the 
edge zones in which T2 > T2m comprise 46 percent of the total length of 
the shell suggests that, in this case, use of the membrane prebuckled 
state in the stability analysis would lead to a low estimate of the buckling 
load. 

In Tables 1 and 2 are given the ring hoop forces of the prebuckled 
equilibrium state for Configurations (A) and (B), respectively. In these 
tables, the rings are numbered in the order encountered as the shell 
meridian is traversed starting at the small end. In Table 2, omitted 
values for Cases 2 through 6 are unchanged from the corresponding values 
for Case 1. Although not used in the stability analysis, the prebuckling 
bending moments of the end rings are shown in Tables 3 and 4 for Config- 
urations (A) and (B), respectively. The ring torsional moment is not 
shown since it is identically zero for axisymmetric deformations. 
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In the case of Configuration (B), Eqs. (1) represent the membrane 
response of an equivalent orthotropic shell. Therefore, the average effect 
of the prebuckling ring hoop forces of Table 2 should be added to the cir- 
cumferential stress resultants of Figure 3 before comparing with T2m. In 
this case, it is seen that over most of its interior, the shell is respond- 
ing effectively as an equivalent orthotropic membrane shell for which 
E2/El = (td + AI)/td = 1.69. 

The curves of Figures 2 and 3 may also be used to check qualitatively 
the validity of the linearized prebuckling equilibrium state used in the 
stability analysis, since the basic assumption underlying this approxima- 
tion is that at the critical load l/2 X2 << el = (Tl - j~T2)/Et in regions 
of significant buckling response. 

Buckling Modes 

Table 5 gives the calculated external critical pressures.* The values 
which are shown in parentheses for Cases 2 and 3 include the effect of pre- 
buckling rotations, whereas all other values neglect this effect. Because 
of the smallness of this effect [at most, 4 percent for Configuration (B), 
Case 31 the less precise values of critical pressure shown for Cases 1, 
4, 5, and 6 are considered adequate, and the extra work required to improve 
them unwarranted. 

Since normal pressure loading is nonconservative in Cases 1 through 5, 
it is not known with certainty that the values obtained for this loading 
in Cases 2(N) and 3(N), n = 2, are true kinetic buckling pressures. How- 
ever, these values, being upper bounds to the kinetic buckling pressures, 
represent more accurate results for n = 2 buckling than those obtained for 
the same cases assuming dead pressure. 

*Normally, for a given value of n the computer solution converges to the 
buckling mode with the minimum critical pressure in absolute value. In 
some cases the critical pressure obtained was negative, indicating that, 
for the given value of n, internal pressure causes buckling at a lower 
value than external pressure. At the same time the calculation furnished 
a lower bound to the external critical pressure. In most of these cases 
this lower bound was higher than the actual external critical pressure 
occurring at a different value of n, and these lower bound values are 
shown in Table 5 preceded by a greater than sign (>). On the other hand, 
if it is necessary to obtain the external pressure buckling mode for the 
given value of n, it can be found by either of the techniques of eigenmode 
orthogonalization or eigenvalue shifting. This was required for Case 2, 
Configuration (B) for n = 2, for which the buckling mode was obtained by 
eigenvalue shifting. 
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Figures 4 and 5 show the incipient buckling mode displacements for 
Configurations (A) and (B), respectively. Cases 1, 3, and 6 are shown; 
Cases 2, 4, and 5 are nearly identical to Case 1. The corresponding func- 
tions for inextensional deformation are: 

U = Arb 

V = Br - nArb/sin a 

2 
w = (n - sin 2 a)Arb/sin a cosa- nBr/cosa 

(2) 

Comparison of Eqs. (2) with the curves of Figures 4 and 5 show that 
for Cases 1, 2, 4, and 5, the buckling mode is essentially inextensional. 
Since flexural strain energy is smaller than extensional strain energy 
roughly by a factor t2, the natural tendency for thin shells is to buckle 
(or vibrate) in an inextensional mode, if it is kinematically admissible. 
In fact, for n = 2, there is very little difference between the buckling mode 
shapes of Cases 1, 2, and 3. It follows that the flexural strain energy 
of the base ring in its buckled state essentially controls the correspond- 
ing critical pressures. Since the (flexural) section properties of the 
base rings of Cases 1, 2, and 3 vary in the same proportion, the second 
harmonic critical pressure for these cases varies approximately in a 
linear fashion with the base ring flexural rigidity. 

On the other hand, for sufficient base edge constraint, the governing 
buckling mode has seven circumferential waves, as in Cases 3 and 6. In 
this mode of buckling, the shell develops high extensional strain energy, 
whereas the edge rings develop relatively little strain energy, evidenced 
by the small buckling displacements at the edges. Consequently, the corres- 
ponding critical pressures are relatively insensitive to the edge conditions. 

Similar results have previously been reported in Ref. 2 for cylindrical 
shells with ring-stiffened edges. However, the result of Ref. 2 that 
the critical load for cylindrical shells is essentially independent of the 
out-of-plane ring flexural 'rigidity has no counterpart for conical shells. 
This fact is illustrated by the results for Cases 4 and 5, which show that 
for Configuration (A) Ix (of the base ring) is more efficacious than Is, 
whereas for Configuration (B) the reverse is true. 

As indicated by the buckling displacements of the ring-stiffened shell 
in Figure 5, some of the interior rings are relatively lax in resisting 
the buckling, particularly those in the vicinity of the small end of the 
cone. Therefore, a significant increase in critical pressure may result 
from a redistribution of the ring material in accordance with the distri- 
bution of buckling deflections. 
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In Figure 6 are plotted the critical pressures of Cases 1, 2, and 3 
as a function of base ring flexural rigidity. The intersection of the 
curves for n = 2 and n = 7 give the minimum base ring rigidity required to 
suppress inextensional buckling. As the n = 7 curves indicate, further 
stiffening of the base ring is ineffectual. 

The dashed curves in Figure 6 are straight lines connecting the values 
obtained for Cases 2 and 3 including both the effect of normal pressure 
and prebuckling deformations. Since the true curve including these effects 
is concave downward, these straight lines are conservative approximations. 
From Figure 6 is is seen that these effects shift the necessary EI value 
from approximately 40.5 x lo6 lb-in.2 to 47 x lo6 lb-in.2-for Configuration (A) 
and from 30 x 106 lb-in.2 to 33.5 x lo6 lb-in.2 for Configuration (B). 

CONCLUDING REMARKS 

It has been shown that an inadequate base ring can result in low 
values of the criticalexternalpressure for blunt conical shells typical 
of proposed planetary entry bodies. The minimum base ring sizes required 
to suppress this unwanted inextensional buckling mode for a uniform sand- 
wich and a uniformly ring-stiffened monocoque wall construction have been 
determined. Of the two wall constructions studied, the sandwich construc- 
tion is superior, withstanding up to 50 percent more pressure than the 
ring-stiffened monocoque when, for each shell, the base ring exceeds the 
minimum size. However, a significant increase in critical pressure for 
the ring-stiffened shell may result from a redistribution of the ring mater- 
ial in accordance with the distribution of buckling deflections. 
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TABLE 1. PREBUCKLING RING HOOP FORCES (LB) 
CONFIGURATION (A), p = 1 PSI 

RING case: 1 2 3 4 5 6 ___ .L... 

1 3808.1 3808;l 3808.4 3808.0 3808.0 --- 

2 -510.0 -563.7 -694.8 -532.4 -459.4 --- 

TABLE 2. PREBUCKLING RING HOOP FORCES (LB) 
CONFIGURATION (B), p = 1 PSI 

RING\case: 1 2 3 4 5 6 
- 

1 4424.3 
2 -24.94 
3 -141.42 
4 -114.61 
5 -101.32 
6 -100.51 
7 -101.78 
8 -102.72 
9 -103.47 

10 -104.26 
11 -105.11 
12 -106.02 
13 -106.99 
14 -108.00 
15 -109.05 
16 -110.15 
17 -111.28 
18 -112.45 
19 -113.65 
20 -114.88 
21 -116.14 
22 -117.43 
23 -118.74 
24 -120.04 
25 -121.34 
26 -122.70 
27 -124.49 
28 -127.23 
29 -130.45 
30 -129.62 
31 -131.14 
32 -70.69 
33 -213.47 

+ 

3 

+ 

-120.03 
-121.32 
-122.71 
-124.65 
-127.68 
-130.91 
-128.33 
-106.19 

-55.95 
-269.29 

-120.03 -120.04 -120.05 
-121.30 -121.32 -121.35 
-12'2.72 -122.71 -122.71 
-124.75 -124.61 -124.40 
-127.97 -127.54 -126.88 
-131.28 -130.73 -129.89 
-127.71 -128.61 -129.96 
-101.98 -108.17 -117.58 

-46.06 -60.64 -82.98 
-305.55 -252..15 -170.54 

em- 
-108.87 
-104.39 
-100.87 
-100.74 
-101.39 
-102.05 
-102.72 
-103.45 
-104.25 

-118.75 
-120.06 
-121.31 
-122.55 
-124.12 
-127.04 
-132.17 
-136.34 
-124.39 

-67.08 
w-e 
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TABLE 3. PREBUCEIING RING BENDING MOMENTS (LB-IN.) 
CONFIGURATION (A), p = 1 PSI 

Case 
Nose Ring Base Ring 

In-Plane Out-of-Plane In-Plane Out-of-Plane 

1 0 -4407.7 0 

2 0 -4407.8 0 

3 0 -4408.0 0 

4 0 -4407.8 425.33 

5 0 -4407.7 -472.14 

TABLE 4. PREBUCKLING EDGE RING BENDING MOMENTS 
CONFIGURATION (B), p = 1 PSI 

250.06 

935.93 

2415.6 

736;74 

272.59 

(LB-IN.) 

Case 

1 

Nose Ring 
In-Plane Out-of-Plane --- 

0 -7627.5 

Base Ring 
In-Plane Out-of-Plane 

0 325.78 

2 0 -7627.5 0 607.24 

3 0 -7627<5 0 962.55 

4 0 -7627.5 325.91 564.5'4 

5 0 -7627.5 -625.65 361.23 

&ote: Positive out-of-plane bending moments correspond to tensile stress 
in the circumferential filaments in the aft portion of the ring. 
Positive in-plane bending moments correspond to tensile stress in 
the circumferential filaments in the inside portion of the ring. 
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TABLE 5. EXTERNAL CRITICAL PRESSURE (PSI) 

CONFIGURATION (A) 

CASE/n: 2 3 4 5 6 7 8 9 

1 1.16 

2 3.30(3.23) 

2(N) (3.09) 

3 >9.85(9.22) 

3(N) (8.64) 

4 1.75 

5 0.991 

6 >31.3 
I I z 6 09 
I 

1 0.897 

2 2.95(2.90) 

2(N) (2.76) 

3 9.41(8.92) 

3(N) (8.24) 

4 0.296 

5 0.495 

6 >21.3 

6 09 

3.29 6.83 5.73 5.97 6.51 

10.2 8.66 6.04 6.70 

>28.1 9.22 6.79 6.18(6.08) 

5.80 

3.05 

>36.8 

>2.45 

9.03 

0.622 

1.62 

8.56 

7.80 

8.70 6.19 

8.68 

CONFIGURATION (B) 

4.82 

4.36 4.21(4.05) 

>1.70 

>2.02 

4.485 

5.57 

5.67 

5.72 

5.72 

4.15 

4.25 

4.24 

6.32 6.82 

6.18 

6.38 

5.96 6.51 

6.51 

4.73 

4.40 

4.35 

Notes: a) (N) signifies normal pressure loading. 
b) Values in parentheses include the effect of prebuckling deformations. 
c> Values preceded by > are lower bounds. In these cases external critical pressure 

not found. 
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FIGURE 1. CONE BUCKLING MODELS, DIMENSIONS ARE IN INCHES 
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